Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Eap1p, a novel eukaryotic translation initiation factor 4E-associated protein in Saccharomyces cerevisiae.

Identifieur interne : 001A38 ( Main/Exploration ); précédent : 001A37; suivant : 001A39

Eap1p, a novel eukaryotic translation initiation factor 4E-associated protein in Saccharomyces cerevisiae.

Auteurs : G P Cosentino [Canada] ; T. Schmelzle ; A. Haghighat ; S B Helliwell ; M N Hall ; N. Sonenberg

Source :

RBID : pubmed:10848587

Descripteurs français

English descriptors

Abstract

Ribosome binding to eukaryotic mRNA is a multistep process which is mediated by the cap structure [m(7)G(5')ppp(5')N, where N is any nucleotide] present at the 5' termini of all cellular (with the exception of organellar) mRNAs. The heterotrimeric complex, eukaryotic initiation factor 4F (eIF4F), interacts directly with the cap structure via the eIF4E subunit and functions to assemble a ribosomal initiation complex on the mRNA. In mammalian cells, eIF4E activity is regulated in part by three related translational repressors (4E-BPs), which bind to eIF4E directly and preclude the assembly of eIF4F. No structural counterpart to 4E-BPs exists in the budding yeast, Saccharomyces cerevisiae. However, a functional homolog (named p20) has been described which blocks cap-dependent translation by a mechanism analogous to that of 4E-BPs. We report here on the characterization of a novel yeast eIF4E-associated protein (Eap1p) which can also regulate translation through binding to eIF4E. Eap1p shares limited homology to p20 in a region which contains the canonical eIF4E-binding motif. Deletion of this domain or point mutation abolishes the interaction of Eap1p with eIF4E. Eap1p competes with eIF4G (the large subunit of the cap-binding complex, eIF4F) and p20 for binding to eIF4E in vivo and inhibits cap-dependent translation in vitro. Targeted disruption of the EAP1 gene results in a temperature-sensitive phenotype and also confers partial resistance to growth inhibition by rapamycin. These data indicate that Eap1p plays a role in cell growth and implicates this protein in the TOR signaling cascade of S. cerevisiae.

DOI: 10.1128/mcb.20.13.4604-4613.2000
PubMed: 10848587
PubMed Central: PMC85860


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Eap1p, a novel eukaryotic translation initiation factor 4E-associated protein in Saccharomyces cerevisiae.</title>
<author>
<name sortKey="Cosentino, G P" sort="Cosentino, G P" uniqKey="Cosentino G" first="G P" last="Cosentino">G P Cosentino</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry and McGill Cancer Center, McGill University, Montreal, Québec H3G 1Y6, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biochemistry and McGill Cancer Center, McGill University, Montreal, Québec H3G 1Y6</wicri:regionArea>
<orgName type="university">Université McGill</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schmelzle, T" sort="Schmelzle, T" uniqKey="Schmelzle T" first="T" last="Schmelzle">T. Schmelzle</name>
</author>
<author>
<name sortKey="Haghighat, A" sort="Haghighat, A" uniqKey="Haghighat A" first="A" last="Haghighat">A. Haghighat</name>
</author>
<author>
<name sortKey="Helliwell, S B" sort="Helliwell, S B" uniqKey="Helliwell S" first="S B" last="Helliwell">S B Helliwell</name>
</author>
<author>
<name sortKey="Hall, M N" sort="Hall, M N" uniqKey="Hall M" first="M N" last="Hall">M N Hall</name>
</author>
<author>
<name sortKey="Sonenberg, N" sort="Sonenberg, N" uniqKey="Sonenberg N" first="N" last="Sonenberg">N. Sonenberg</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2000">2000</date>
<idno type="RBID">pubmed:10848587</idno>
<idno type="pmid">10848587</idno>
<idno type="pmc">PMC85860</idno>
<idno type="doi">10.1128/mcb.20.13.4604-4613.2000</idno>
<idno type="wicri:Area/Main/Corpus">001A41</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001A41</idno>
<idno type="wicri:Area/Main/Curation">001A41</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001A41</idno>
<idno type="wicri:Area/Main/Exploration">001A41</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Eap1p, a novel eukaryotic translation initiation factor 4E-associated protein in Saccharomyces cerevisiae.</title>
<author>
<name sortKey="Cosentino, G P" sort="Cosentino, G P" uniqKey="Cosentino G" first="G P" last="Cosentino">G P Cosentino</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biochemistry and McGill Cancer Center, McGill University, Montreal, Québec H3G 1Y6, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biochemistry and McGill Cancer Center, McGill University, Montreal, Québec H3G 1Y6</wicri:regionArea>
<orgName type="university">Université McGill</orgName>
<placeName>
<settlement type="city">Montréal</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schmelzle, T" sort="Schmelzle, T" uniqKey="Schmelzle T" first="T" last="Schmelzle">T. Schmelzle</name>
</author>
<author>
<name sortKey="Haghighat, A" sort="Haghighat, A" uniqKey="Haghighat A" first="A" last="Haghighat">A. Haghighat</name>
</author>
<author>
<name sortKey="Helliwell, S B" sort="Helliwell, S B" uniqKey="Helliwell S" first="S B" last="Helliwell">S B Helliwell</name>
</author>
<author>
<name sortKey="Hall, M N" sort="Hall, M N" uniqKey="Hall M" first="M N" last="Hall">M N Hall</name>
</author>
<author>
<name sortKey="Sonenberg, N" sort="Sonenberg, N" uniqKey="Sonenberg N" first="N" last="Sonenberg">N. Sonenberg</name>
</author>
</analytic>
<series>
<title level="j">Molecular and cellular biology</title>
<idno type="ISSN">0270-7306</idno>
<imprint>
<date when="2000" type="published">2000</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Antifungal Agents (pharmacology)</term>
<term>Binding, Competitive (MeSH)</term>
<term>Drug Resistance, Microbial (MeSH)</term>
<term>Eukaryotic Initiation Factor-4E (MeSH)</term>
<term>Eukaryotic Initiation Factor-4G (MeSH)</term>
<term>Fungal Proteins (drug effects)</term>
<term>Fungal Proteins (genetics)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Peptide Initiation Factors (genetics)</term>
<term>Peptide Initiation Factors (metabolism)</term>
<term>Phosphoproteins (metabolism)</term>
<term>Protein Biosynthesis (MeSH)</term>
<term>RNA Caps (MeSH)</term>
<term>Saccharomyces cerevisiae (drug effects)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
<term>Sirolimus (pharmacology)</term>
<term>Temperature (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Antifongiques (pharmacologie)</term>
<term>Biosynthèse des protéines (MeSH)</term>
<term>Coiffes des ARN (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Facteur-4E d'initiation eucaryote (MeSH)</term>
<term>Facteur-4G d'initiation eucaryote (MeSH)</term>
<term>Facteurs initiation chaîne peptidique (génétique)</term>
<term>Facteurs initiation chaîne peptidique (métabolisme)</term>
<term>Fixation compétitive (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Phosphoprotéines (métabolisme)</term>
<term>Protéines fongiques (effets des médicaments et des substances chimiques)</term>
<term>Protéines fongiques (génétique)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Résistance microbienne aux médicaments (MeSH)</term>
<term>Saccharomyces cerevisiae (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Température (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="drug effects" xml:lang="en">
<term>Fungal Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Fungal Proteins</term>
<term>Peptide Initiation Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Fungal Proteins</term>
<term>Peptide Initiation Factors</term>
<term>Phosphoproteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antifungal Agents</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Protéines fongiques</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Facteurs initiation chaîne peptidique</term>
<term>Protéines fongiques</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteurs initiation chaîne peptidique</term>
<term>Phosphoprotéines</term>
<term>Protéines fongiques</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Antifongiques</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Binding, Competitive</term>
<term>Drug Resistance, Microbial</term>
<term>Eukaryotic Initiation Factor-4E</term>
<term>Eukaryotic Initiation Factor-4G</term>
<term>Molecular Sequence Data</term>
<term>Mutation</term>
<term>Protein Biosynthesis</term>
<term>RNA Caps</term>
<term>Signal Transduction</term>
<term>Temperature</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biosynthèse des protéines</term>
<term>Coiffes des ARN</term>
<term>Données de séquences moléculaires</term>
<term>Facteur-4E d'initiation eucaryote</term>
<term>Facteur-4G d'initiation eucaryote</term>
<term>Fixation compétitive</term>
<term>Mutation</term>
<term>Résistance microbienne aux médicaments</term>
<term>Séquence d'acides aminés</term>
<term>Température</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Ribosome binding to eukaryotic mRNA is a multistep process which is mediated by the cap structure [m(7)G(5')ppp(5')N, where N is any nucleotide] present at the 5' termini of all cellular (with the exception of organellar) mRNAs. The heterotrimeric complex, eukaryotic initiation factor 4F (eIF4F), interacts directly with the cap structure via the eIF4E subunit and functions to assemble a ribosomal initiation complex on the mRNA. In mammalian cells, eIF4E activity is regulated in part by three related translational repressors (4E-BPs), which bind to eIF4E directly and preclude the assembly of eIF4F. No structural counterpart to 4E-BPs exists in the budding yeast, Saccharomyces cerevisiae. However, a functional homolog (named p20) has been described which blocks cap-dependent translation by a mechanism analogous to that of 4E-BPs. We report here on the characterization of a novel yeast eIF4E-associated protein (Eap1p) which can also regulate translation through binding to eIF4E. Eap1p shares limited homology to p20 in a region which contains the canonical eIF4E-binding motif. Deletion of this domain or point mutation abolishes the interaction of Eap1p with eIF4E. Eap1p competes with eIF4G (the large subunit of the cap-binding complex, eIF4F) and p20 for binding to eIF4E in vivo and inhibits cap-dependent translation in vitro. Targeted disruption of the EAP1 gene results in a temperature-sensitive phenotype and also confers partial resistance to growth inhibition by rapamycin. These data indicate that Eap1p plays a role in cell growth and implicates this protein in the TOR signaling cascade of S. cerevisiae.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">10848587</PMID>
<DateCompleted>
<Year>2000</Year>
<Month>07</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0270-7306</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>20</Volume>
<Issue>13</Issue>
<PubDate>
<Year>2000</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Molecular and cellular biology</Title>
<ISOAbbreviation>Mol Cell Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Eap1p, a novel eukaryotic translation initiation factor 4E-associated protein in Saccharomyces cerevisiae.</ArticleTitle>
<Pagination>
<MedlinePgn>4604-13</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Ribosome binding to eukaryotic mRNA is a multistep process which is mediated by the cap structure [m(7)G(5')ppp(5')N, where N is any nucleotide] present at the 5' termini of all cellular (with the exception of organellar) mRNAs. The heterotrimeric complex, eukaryotic initiation factor 4F (eIF4F), interacts directly with the cap structure via the eIF4E subunit and functions to assemble a ribosomal initiation complex on the mRNA. In mammalian cells, eIF4E activity is regulated in part by three related translational repressors (4E-BPs), which bind to eIF4E directly and preclude the assembly of eIF4F. No structural counterpart to 4E-BPs exists in the budding yeast, Saccharomyces cerevisiae. However, a functional homolog (named p20) has been described which blocks cap-dependent translation by a mechanism analogous to that of 4E-BPs. We report here on the characterization of a novel yeast eIF4E-associated protein (Eap1p) which can also regulate translation through binding to eIF4E. Eap1p shares limited homology to p20 in a region which contains the canonical eIF4E-binding motif. Deletion of this domain or point mutation abolishes the interaction of Eap1p with eIF4E. Eap1p competes with eIF4G (the large subunit of the cap-binding complex, eIF4F) and p20 for binding to eIF4E in vivo and inhibits cap-dependent translation in vitro. Targeted disruption of the EAP1 gene results in a temperature-sensitive phenotype and also confers partial resistance to growth inhibition by rapamycin. These data indicate that Eap1p plays a role in cell growth and implicates this protein in the TOR signaling cascade of S. cerevisiae.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cosentino</LastName>
<ForeName>G P</ForeName>
<Initials>GP</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and McGill Cancer Center, McGill University, Montreal, Québec H3G 1Y6, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schmelzle</LastName>
<ForeName>T</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Haghighat</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Helliwell</LastName>
<ForeName>S B</ForeName>
<Initials>SB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hall</LastName>
<ForeName>M N</ForeName>
<Initials>MN</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sonenberg</LastName>
<ForeName>N</ForeName>
<Initials>N</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>Z28204</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Cell Biol</MedlineTA>
<NlmUniqueID>8109087</NlmUniqueID>
<ISSNLinking>0270-7306</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000935">Antifungal Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D039561">Eukaryotic Initiation Factor-4E</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D039603">Eukaryotic Initiation Factor-4G</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010448">Peptide Initiation Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010750">Phosphoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012315">RNA Caps</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C410795">eIF4E-associated protein Eap1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000935" MajorTopicYN="N">Antifungal Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001667" MajorTopicYN="N">Binding, Competitive</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004352" MajorTopicYN="N">Drug Resistance, Microbial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D039561" MajorTopicYN="N">Eukaryotic Initiation Factor-4E</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D039603" MajorTopicYN="N">Eukaryotic Initiation Factor-4G</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010448" MajorTopicYN="N">Peptide Initiation Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010750" MajorTopicYN="N">Phosphoproteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014176" MajorTopicYN="N">Protein Biosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012315" MajorTopicYN="N">RNA Caps</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="N">Temperature</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2000</Year>
<Month>6</Month>
<Day>10</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2000</Year>
<Month>7</Month>
<Day>25</Day>
<Hour>11</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2000</Year>
<Month>6</Month>
<Day>10</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">10848587</ArticleId>
<ArticleId IdType="pmc">PMC85860</ArticleId>
<ArticleId IdType="doi">10.1128/mcb.20.13.4604-4613.2000</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1997 Apr 11;272(15):10240-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9092573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 May 13;94(10):5201-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9144215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1997 May 2;268(2):303-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9159472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Jul 4;277(5322):99-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9204908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1997 Jun 16;16(12):3693-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9218810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1997 Sep;17(9):5426-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9271419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Oct 17;272(42):26457-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9334222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Enzyme Regul. 1997;37:239-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9381973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Oct 24;278(5338):680-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9381177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1997 Dec;17(12):6876-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9372919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1997 Dec 19;272(51):32547-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9405468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 1997 Dec;9(6):782-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9425342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Feb 13;273(7):3963-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9461583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1432-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9465032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4264-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9539725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 1998 Apr;10(2):268-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9561852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 May 29;273(22):14002-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9593750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1998 Jul;72(7):5811-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9621041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1998 Aug;18(8):4463-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9671456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Aug 17;17(16):4798-808</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9707439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Oct 23;282(5389):699-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9784122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Dec 1;17(23):6924-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9843498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1998 Dec;9(12):3273-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9843569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 1999 Feb;9(1):49-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10072357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1999 Apr;10(4):987-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10198052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1999 May 15;340 ( Pt 1):135-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10229668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1999 May 17;18(10):2782-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10329624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1999 Jun 1;13(11):1422-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10364159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1988 Dec 30;74(2):517-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3246354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1988 Dec 30;74(2):527-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3073106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 Jul 25;264(21):12145-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2663851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1989 Sep 25;17(18):7520</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2678000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1989 Oct;9(10):4467-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2685552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1990;185:60-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2199796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1990 Jul 2;91(1):127-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2205536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Aug 23;253(5022):905-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1715094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1991 Dec;11(12):5992-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1719376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1991 Dec;16(12):478-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1664152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1992 Mar 25;20(6):1425</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1561104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Aug;19(8):5557-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10409745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1999 Aug;10(8):2531-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10436010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Dec 9;402(6762):689-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10604478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1999;68:913-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10872469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1982;1(8):945-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6329717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1984 May 22;23(11):2456-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6089873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1985 Jun 25;260(12):7651-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3838990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1985 Nov;82(22):7515-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3865175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1985 Oct 22;24(22):6085-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3910088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1987 Apr;7(4):1338-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3299046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 1987 Sep;172(1):134-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3308493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1987;60(2-3):217-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2832252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1988 Jul;2(7):801-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3061875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1988 Aug;8(8):3556-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3062383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 May 15;256(5059):1014-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1589769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 Oct 15;267(29):21167-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1400427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1993 May 7;73(3):585-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8387896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1993 Aug;13(8):4860-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8336723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Feb 25;269(8):6117-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8119957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1994 Jan;5(1):105-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8186460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1994 Jun 2;369(6479):371-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8196765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1994 Jun;19(6):258-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8073505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1994 Oct 27;371(6500):762-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7935836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1994 Oct 28;266(5185):653-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7939721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1995 Mar 10;246(5):619-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7700235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1995 Jul 14;82(1):121-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7606777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1995 Sep;15(9):4990-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7651417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Nov 3;270(44):26505-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7592868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Nov 17;270(46):27531-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7499212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1995 Nov 15;14(22):5701-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8521827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 Feb 1;15(3):658-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8599949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1996 Aug 1;10(15):1904-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8756348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1996 Aug 14;1308(2):142-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8764832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1996 Jan;7(1):25-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8741837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Oct 4;271(40):24526-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8798713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1996 Dec;70(12):8444-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8970966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1997 Jan 24;88(2):243-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9008165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1997 Mar 3;16(5):1114-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9118949</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
<region>
<li>Québec</li>
</region>
<settlement>
<li>Montréal</li>
</settlement>
<orgName>
<li>Université McGill</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Haghighat, A" sort="Haghighat, A" uniqKey="Haghighat A" first="A" last="Haghighat">A. Haghighat</name>
<name sortKey="Hall, M N" sort="Hall, M N" uniqKey="Hall M" first="M N" last="Hall">M N Hall</name>
<name sortKey="Helliwell, S B" sort="Helliwell, S B" uniqKey="Helliwell S" first="S B" last="Helliwell">S B Helliwell</name>
<name sortKey="Schmelzle, T" sort="Schmelzle, T" uniqKey="Schmelzle T" first="T" last="Schmelzle">T. Schmelzle</name>
<name sortKey="Sonenberg, N" sort="Sonenberg, N" uniqKey="Sonenberg N" first="N" last="Sonenberg">N. Sonenberg</name>
</noCountry>
<country name="Canada">
<region name="Québec">
<name sortKey="Cosentino, G P" sort="Cosentino, G P" uniqKey="Cosentino G" first="G P" last="Cosentino">G P Cosentino</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A38 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001A38 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:10848587
   |texte=   Eap1p, a novel eukaryotic translation initiation factor 4E-associated protein in Saccharomyces cerevisiae.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:10848587" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020